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Abstract. One of the main difficulties in most modern Intrusion Detection Systems 
is the problem of massive alarms generated by the systems.  The alarms may either 
be false alarms which are wrongly classified by a sensitive model, or duplicated 
alarms which may be issued by various intrusion detectors or be issued at different 
time for the same attack.  We focus on learning-based alarm filtering 
system. The system takes alarms as the input which may include the alarms from 
several intrusion detectors, or the alarms issued in different time such as for multi-
step attacks. The goal is to filter those alarms with high accuracy and enough repre-
sentative capability so that the number of false alarms and duplicated alarms can be 
reduced and the efforts from alarm analysts can be significantly saved. To achieve 
that, we consider the causal correlation between relevant alarms in the temporal 
domain to re-label the alarm either to be a false alarm, a duplicated alarm, or a rep-
resentative true alarm. To be more specific, recognizing the importance of causal 
correlation can also help us to find novel attacks. As another feature of our system, 
our system can deal with the frequent changes of network environment. The 
framework gives the judgment of attacks adaptively. An ensemble of classifiers is 
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adopted for the purpose. Accordingly, we propose a system mainly consisting of 
two components: one is for alarm filtering to reduce the number of false alarms and 
duplicated alarms; and one is the ensemble-based adaptive learner which is capa-
ble of adapting to environment changes through automatic tuning given the exper-
tise feedback. Two datasets are evaluated. 

Keywords: Intrusion detection, alarm filtering, false alarm, adaptive learning, 
ensemble. 

1   Introduction   

Over the last couple of decades, the intrusion methods are getting sophisticated 
and diversified.  Variety of rootkits and exploit codes are easily obtained for the 
hackers to attack the systems.  Therefore, individual data can be illegally read or 
overwritten by intruders.  Many different Intrusion Detection Systems (IDSs) have 
been provided to detect those malicious attacks.  However, one of the weakest 
points with those IDSs is the problem of massive false alarms (or false positives).  
As revealed in several reports, IDS usually generates nearly 99% of false alarms in 
the detection [1, 5].  On the other hand, various alarms, which could be issued by 
naïve decision rules may come from the same unique attack.  For instance, several 
minor alarms may suggest a multi-step attack.  A clever detection system should 
be able to single out the reason for further automatic or non-automatic analysis.  
Overall, false alarms or duplicated alarms can waste significant time from human 
analyzers.  Without considering those issues, an IDS can be virtually useless.  The 
problem is more serious when no enough human analyzers can be assigned for 
further analysis of the generated alarms.  E.g., a personal IDS will not afford such 
overhead.  In this work, we propose an alarm filtering (AF) framework which can 
significantly reduce these two kinds of alarms: false alarms and duplicated alarms.  
The framework considers causal correlation between alarms and alarms will then 
be issued with high accuracy and no redundancy.  As another important feature, to 
apply our system to real network, we would like to make the final decision of 
alarm classification adaptively to different periods and to different environment.  
An ensemble of classifiers called ensemble-based adaptive learner (EAL) will be 
adopted to adjust the prediction precision and sensitivity for the system according 
to network conditions.  The feedback from alarm analysts will be used to tune the 
setting periodically. 

To reduce the false alarms and duplicated alarms, our AF system considers 
causal correlation between several alarms when they are either temporally corre-
lated or associated with a single attack.  Alarm correlation [12, 13] has been used 
in discovering the intentions or root cause of the attackers [3] and how they 
achieve their goals [8], i.e. the attack methods.  Based on our observations, single 
minor alarm in small scale may be confusing, but minor alarms collected as a 
whole may indicate a serious attack. When lacking of considerations in large 
scale, some alarms may be mislabeled, so called the false alarm problem. On the 
other hand, multi-step attacks often trigger a bunch of alarms in a sensitive system 
to downgrade the performance of the system, so called the duplicated alarm 
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problem.  To deal with these two problems, one has to consider causal correlated 
alarms instead of a single alarm.  Note that reduction of false alarms may lower 
the detection sensitivity (also known as recall).  A trusted system must still be sen-
sitive enough to detect serious attack and at the same time only a small number of 
false alarms are generated.  As a challenging but an important extreme, our AF 
system will have the ability to identify novel alarms or alarms related to novel at-
tacks.  Causal correlation is considered for those alarms which may be associated 
with some anomaly behaviors and the final judgment can then be given with high 
confidence.  We need to emphasize that the single alarm is usually issued from 
some naïve decision rules or signature alignment, to deal with various special cas-
es or to solve some particular problems.  Such rules may be created by a simple-
minded consideration without too much rigorous efficiency analysis of the whole 
system.  On the other hand, some rules may be created with a global view and lack 
of ability to fit into special environment, e.g., the period when new attacks just be-
ing released, or the “normal” period with low number of “background alarms”.  
Our system offers a solution for that.  To consider the causal correlation for a set 
of alarms, we are possible to relate the alarms to true attack or the attack of high 
risk, including novel attacks. 
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Fig. 1 Architecture of Adaptive Alarm Filtering System 

The consideration of causal correlation can reduce both of the false alarms and 
duplicated alarms, and at the same time can deal with novel attacks.  However, the 
network environment is usually not stable.  As a result, operators have to tune and 
confirm the setting of IDSs frequently for the changes.  That creates a burden for 
the operators.  Due to the changes of network environment including devices, ser-
vices or attack approaches, the pre-trained classifier will be getting to lose its ac-
curacy on prediction after a certain period.  This phenomenon is called concept 
drift [11] and happens very often in the real world.  To address the problem, we 
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consider automatically tuning the system so that the intrusion detection can adapt 
to the environment.  An adaptive learning system filters false and duplicated 
alarms after IDSs and adaptively learns from responses of experts recurrently [6, 
9].  That helps system operators relieved from laboring works on parameter tun-
ing.  Different from previous research, our proposed framework gets more focused 
on practical issues of changing network environment over different periods or 
even different sites.  Using the proposed ensemble-based adaptive learner (called 
EAL) is eligible to give robust performance on prediction as time goes by or for 
different network environment.  It is understood that the network data are large-
scale stream data, and usually highly unbalanced between attacks and normal data.  
Besides, most attacks happen in a continuous fashion in a very short period of 
time.  To deal with those concerns, our EAL is proposed based on entropy compu-
tation, also inspired by AdaBoost [10].  Also, some aging effect is added to the 
system.  By our approach, the rare attacks are not to be overlooked and can con-
tribute some to our system.  Other than adapting to time, we can also make our 
system adaptive to different commercial organizations.  We will take the risk of 
assets as the input for further system improvement.  Overall, we aim at designing a 
system which can be applied to real environment. 

2   Feature Extraction, Alarm Filtering and Adaptation 

In this section, we discuss our proposed system in full details, as illustrated in Fig. 
1.  Different from most IDSs, we focus on the reduction of false alarms and dupli-
cated alarms after IDSs issue alarms.  To deal with real network data, we also 
consider an adaptive system where the attack call may depend on the time infor-
mation.  Our system can take alarms from several sources, e.g., distributed IDSs, 
as the input.  Basically, the system can be separated into three parts: Feature Ex-
traction Unit, Alarm Filtering Unit, and Ensemble-based Adaptive Learning Unit. 
We proceed to give details for those different units. 

2.1   Feature Extraction 

Many factors combined together to decide which alarm comes from a true attack.  
They include causal correlated alarms, unusual changes of frequency in alarm is-
suing, and asset information, etc.  That is, the feature extraction set is beyond the 
common attributes of intrusion alarms, such as packet size, signature names, IP 
addresses, port numbers and so on.  We need to know that, in some cases, the IP 
address may limit the generalization ability of the model [3].  Opposed to that, the 
properties of hosts are more strongly relevant to attacks.  Therefore, an IP address 
is replaced by its corresponding asset information.  Below, we illustrate those fea-
tures one by one. 

Causal Alarm Features.  Our idea is to correlate the alarm in the previous step 
and the alarm at this moment as causal correlation features. As we can imagine, 
the features will help us to detect a multi-step attack. More than that, the features 
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also provide more information on recognizing alarms which may be from novel 
attacks. For instance, if an alarm never happened in historical data, it is still possi-
ble to be classified correctly according to the conditional probability of the alarm 
after observing the pre-step alarms. To be more specific, those features consist of 
the combination of present alarm tag and the alarm tag in the previous stage (or 
pre-step alarm), under three different conditions, pre-step alarm with the same 
source, or same target as the current alarm, or both being the same. 

Abnormal Frequency Value.  Several triggered alarms are like “background 
noises” which happen all the time and may not suggest any meaningful informa-
tion.  The true alarm usually has an instant change that is out of the range of its 
normal frequency.  We can compute mean μ, and variance σ2, of each individual 
alarm a, on daily basis from historical data. The attribute, being able to real-time 
measures the degree of anomaly on individual alarm, is formulated as follows: 
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where x is an accumulated amount of corresponding alarms of the present day, a 
refers to the alarm identity of x, μa is the average number of alarms correspondent 
to alarm a, and 2

aσ  is the correspondent variance. 

2.2   Alarm Filtering 

Alarm Filtering (AF) is to reduce the amount of alarms. To provide succinct alarm 
report to users, we first classify alarms to a class of relevant or irrelevant to an at-
tack, and then aggregate duplicated alarms as an alarm group on behalf of a high 
level event for users. We consider causal correlation of alarms to reduce the false 
alarms, as described previously. An ensemble-based classifier, combined with 
basic learners is adopted as false alarm filtering.  In order to adapt to changing 
network condition, the filter employs ensemble-based adaptive learner to keep up-
dating (discussed later) as time goes by.   

2.3   Ensemble-Based Adaptive Learner 

Inspired by AdaBoost, the proposed EAL algorithm is a meta-learning method 
aimed to combine multi-classifiers when data are incrementally grown with 
time.  Different from many related works  [2, 4], the proposed algorithm is  
specifically focused on the characteristics of computer network and practical re-
quirement of SOC. 

In our ensemble of classifiers, there are two types of weights should be opti-
mized.  They are example weight for each instance and classifier weight, so called 
voting weight for each weak classifier.  To learn from feedbacks, alarm log is se-
parated by day as 

1 0 and  J J JD D d D φ−= =U  where ( )
1{( , , ) }n j

j ji ji ji id w z == x  , n(j) 
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denotes the amounts of alarms in the j-th day, xji is an alarm feature vector of the 
i-th example, wji∈[0, 1] denotes the corresponding example weight, and zji∈  Z= 
{-1,1} indicates the corresponding real class in the j-th day.  We set different ex-
ample weights according to its class in our experiments.  Borrowing the concept of 
entropy from information theory, we can deal with the problem of unbalanced da-
ta.  Moreover, sample re-weighting, like AdaBoost, and complementary learning 
from previous wrongly predicted examples, strongly enhance the robustness of our 
system.  The function is listed as follows: 

z Z
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( ) arg max ( , , ) ( , )
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Where hfinal(。) is the finial hypothesis of committee decision with m member 
classifiers, hk( 。 ) represents the hypothesis of the k-th day, 

(1 ( ( ))) log((1 ) / )k k k kv entropy P d ε ε= + ⋅ −  is the corresponding voting weight de-

cided by its error rate ε, and the entropy defined by, 
( ) ln( ) (1 ) ln(1 )entropy P P P P P= − − − − ,  indicating the information of the k-th 

training data point for the distribution. The ( )kP d  is the portion of true alarms in 

a training set.  Finally, in order to being adaptive to changes, the Memory Decline 
Ratio (MDR) listed as follows will be used: 
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which is inspired by aging-forgetting mechanism and modified by sigmoid function. 
It is employed to tune the voting weight through the time in each individual classi-
fier. The forgetting slope λ, is set for how fast to drop out a useless classifier with 
tolerating time τ.  Setting the pair of parameters will be discussed in experiment and, 
actually, depends on the degree of concept drift or change in each dataset. 

3   Experiments 

We have built a prototype system to demonstrate the proposed approach that is 
able to filter the alarms of both kinds, the false alarms and the duplicated alarms.  
Below, we discuss different measurement on the system of alarms filtering such as 
False Positive (FP), which analysts have to pay extra effort with, and True Nega-
tive (TN), which means that filtered alarms are indeed not correlated to attacks.  
Of course, filtering out the true alarms associated to attacks is more serious than 
anything else, e.g. achieving high TP rate.  Moreover, the ability to identify novel 
alarms is also taken into account.  There are two experiments designed for demon-
stration. One is to evaluate that the proposed feature set including the causal corre-
lation features is able to enhance the performance of intrusion detection. The 
second experiment is to compare with different learning schemes to support that 
our approach is able to filter out false or duplicated alarms and effectively adapt to 
network change especially when novel alarms happen. 
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Novel alarms make operators tune the setting of IDSs from time to time.  The 
novel alarms also make pre-trained model useless after a while.  Hence, we 
especially discuss the ability of our framework to identify novel alarms, meaning 
that our AF is able to give the correct predicted class on an unseen alarm under an 
acceptable level of false positive rate.  By means of Receiver Operating Character-
istic (ROC) curve, the False Positive (FP) rate referring to cost and the True Posi-
tive (TP) rate referring to detection ability allow analysts to know the trade off 
between detection rate and cost. 

3.1   Datasets 

The system was validated by two datasets.  The first one is made by a popular 
benchmark, DARPA 1999 [7]; the other is a real world private alarm dataset, 
which is provided from an SOC operated in Taiwan, called A-SOC 2007. The cen-
ter offers a service of security surveillance to their clients, including many organi-
zations, government departments and companies. Both of the alarms of DARPA 
and A-SOC are manually labeled for evaluation according to its official report and 
warning tickets to monitored client, respectively. 

Data Distribution. Their data distributions are shown in Table 1.  

Table 1 Distribution of each dataset for Experiments.  Novel alarms represent that an alarm 
is never seen before the day  

Distribution of Alarm Label 
Dataset Duration 

Dis-
tinct IP 

 
Total (Novel) True (Novel) False (Novel) 

DARP
A 

1999.3.1 ~ 
1999.4.10 

546  55,473 (3,693) 
19,109 
(2,191) 

36,364 (1,502) 

A-SOC 
2007.8.30 
~ 2007.9.7 

5,368  
308,063 
(56,984) 

6,743 (2,978) 
301,320 
(54,006) 

3.2   Performance Measurement 

Receiver Operating Characteristic (ROC) curve is adopted as the main perform-
ance measurement.  The unbalanced problem makes the performance hard to be 
evaluated. Because the number difference between true alarms and false alarms is 
large, the enhancement of performance on identifying rare true alarms is easy to 
be overlooked if using Accuracy as a measurement. ROC curve, which consists of 
TP rate and FP rate, is suitable to be a performance measurement for this. In the 
viewpoint of system security operators, they want to know how much cost (FP 
rate) they have to pay if keeping a level of sensitivity of recognizing rare attacks.  
ROC curve can serve this purpose because false positive rate is like a cost we have 
to pay if we want to reach a level of true positive rate (alarm detection rate). 
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Table 2 Performance Test with Different Feature Combinations.  The performance com-
parison is TP rate (detection rate) vs. FP rate (cost). The detection rate of novel alarms is 
specifically demonstrated for revealing the ability to detect novel alarms with different fea-
ture combinations.  Basic feature set is the original attributes generating from Snort IDS but 
excluding source and destination IP addresses 

Cost All Alarms Novel Alarms 
Dataset 

Feature  
Combination FP rate TP rate TP rate 

Correctly 

Filtered 

Basic 18.83% 82.45% 85.76% 89.8% 
DARPA 

Causal 5.26% 95.08% 87.36% 97.34% 

Basic 37.19% 64.01% 87.58% 98.73% 
A-SOC 

Causal 28.03% 62.36% 88.68% 98.84% 

Note: Our experiment takes all alarms as the input.  Correctly Filtered Alarms represent the 
re-labeled false alarms that are indeed not associated to attacks and can be filtered out 
appropriately 

3.3   Results and Discussion 

Feature Set Evaluation. The first experiment is to demonstrate that the causal 
correlation is helpful on alarms filtering without sacrificing the detection rate.  To 
achieve that, we test different feature combinations with DARPA and A-SOC da-
tasets and analyze the performance result.  As shown in Table 2, the proposed 
causal feature set including basic alarm information, asset, causal correlation and 
variance frequency has the best performance, higher detection rate and lower FP 
rate, especially on detecting novel alarms.  Moreover, adopting the causal correla-
tion features to classify SOC dataset causes that the false positive rate is greatly 
reduced about 10%.  The reason is that the SOC dataset gathered in 2007 has more 
sophisticated multi-step attacks than DARPA 1999.  Therefore, the causal correla-
tion feature set has greater enhancement on SOC dataset than on DARPA 1999. 

Cost and Detection Rate. To evaluate our approach on the tradeoff of cost and 
detection rate, our proposed EAL are compared with two other generic schemes in 
the second experiment.  The first controlled scheme is that the decision model on-
ly keeps the last classifier in alarm ensemble classifiers for prediction. The second 
one is to keep all previous trained classifiers and combine them with the same 
weight in alarm ensemble classifiers for prediction.  The comparison of ROC 
curve is shown in Fig. 2, which demonstrates that our approach receives the larg-
est area-under-curve (AUC) values in both of the DARPA and A-SOC datasets.  
The ROC curve provides analysts the view of how much the cost has to pay if the 
model can identify alarms including novel alarms, as shown in Fig 2(a) and 2(b).  
The cost implicitly means that analysts have to spend their time to pick out the 
false alarms.  Obviously, the high cost is unpractical when the system is operated 
on real environment.  All comparison results are illustrated in Table 3. Our 
proposed EAL also performs very well on correctly filtering alarms without 
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(a) ROC curve of DARPA dataset 
 

(b) ROC curve of A-SOC dataset 

Fig. 2 Capability of detecting false alarms - ROC curves of different incremental classifier 
schemes using a base learner, J48 from Weka 

Table 3 Performance comparison, TP rate (detection rate) vs. FP rate (cost), with different 
learning schemes. The scheme of only last classifier is to predict alarms by the classifier 
trained from the previous day.  And, whole classifier means the alarm ensemble classifiers 
combining all of previous trained classifiers for prediction.  The last scheme is our pro-
posed approach EAL, for prediction  

Cost All Alarms Novel Alarms Correctly Filtered Alarms 
Dataset Learning scheme 

FP rate TP rate TP rate TN / (TN + FN) 

Only Last Classifier 5.92% 87.96% 81.79% 93.7% (34,210 / 36,511) 

Whole Classifier 16.46% 71.52% 20.58% 84.81% (30,378 / 35,820) DARPA

EAL 5.7% 93.22% 87.17% 96.36% (34,292 / 35,588) 

Only Last Classifier 6.43% 48.63% 56.28% 98.79% (281,938 / 285,402) 

Whole Classifier 30.08% 49.35% 80.86% 98.4% (210,690 / 214,105) A-SOC 

EAL 28.03% 62.36% 88.68% 98.84% (216,854 / 219,392)  

sacrificing much to deal with novel or rare true alarms.  In traditional methods on 
false alarm reduction, assessing risk through an asset table or setting a correlation 
rule to recognize true alarms is possible to ignore novel alarms. Therefore, they 
can only aware of known attack and lack of ability to defense from a new threat.  
However, in our experiment, it actually shows the ability to find out novel alarms. 

Aggregation Duplicated Alarm. There are 55,473 individual alarms in DARPA 
dataset grouped into 11,197 groups, including only two impure groups, which in-
clude true and false alarms in the same group.  The reduced amount significantly 
relieves about 75% of overall alarms.  On the other hand, the 308,063 individual 
alarms in A-SOC dataset are grouped into 25,662 groups with 27 impure groups 
but still helpful for analysts.  As a result, analysts just need to confirm the succinct 
alarm groups with predicted true class of alarms instead of a large number of indi-
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vidual alarms.  About 92% labor is saved in A-SOC dataset by means of our ap-
proach.  Actually, our grouping approach does not only save work for analysts but 
also make analysts easily giving feedback for enhancing the ability of the alarm 
ensemble classifiers on further prediction. 

4   Conclusions 

We proposed a system for adaptive alarm filtering.  Our goal is to enhance the per-
formance of IDS through reducing the number of false alarms and duplicated 
alarms.  Other than that, our system can be operated in an adaptive fashion.  The 
proposed learning-based alarm filtering system does not only classify alarms with 
high confidence but also adaptively change with time goes by according to feed-
back from experts.  Moreover, through our feature set including the causal correla-
tion features, the system also makes identifying novel alarms possible.  After 
evaluation of experiments on DARPA and A-SOC dataset, all individual alarms 
are aggregated as groups, which reduces size to about 25% and 8% from original 
alarms respectively.  In the mean while, with at least 87% novel alarm detection 
rate, about 96% to 98% of the false alarms have been correctly filtered out in 
DARPA and A-SOC dataset. After false alarms significantly identified by pro-
posed approaches, analysts can actually pay more attentions on the main courses 
such as intrusion analysis and related responses. 
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